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Received 21 June 2002
Published online 14 February 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. In 1969, Andreev and Lifshitz have conjectured the existence of a supersolid phase taking place
at zero temperature between the quantum liquid and the solid. In this and a succeeding paper, we re-visit
this issue for a few polarized electrons (spinless fermions) interacting via a U/r Coulomb repulsion on a
two dimensional L × L square lattice with periodic boundary conditions and nearest neighbor hopping t.
This paper is restricted to the magic number of particles N = 4 for which a square Wigner molecule is
formed when U increases and to the size L = 6 suitable for exact numerical diagonalizations. When the
Coulomb energy to kinetic energy ratio rs = UL/(2t

√
πN) reaches a value rF

s ≈ 10, there is a level crossing
between ground states of different momenta. Above rF

s , the mesoscopic crystallization proceeds through
an intermediate regime (rF

s < rs < rW
s ≈ 28) where unpaired fermions with a reduced Fermi energy

co-exist with a strongly paired, nearly solid assembly. We suggest that this is the mesoscopic trace of the
supersolid proposed by Andreev and Lifshitz. When a random substrate is included, the level crossing at rF

s

is avoided and gives rise to a lower threshold rF
s (W ) < rF

s where two usual approximations break down:
the Wigner surmise for the distribution of the first energy excitation and the Hartree-Fock approximation
for the ground state.

PACS. 71.10.-w Theories and models of many-electron systems – 73.21.La Quantum dots –
73.20.Qt Electron solids

1 Introduction

A basic question in quantum many body theory is to know
how one goes from independent particle motion towards
collective motion when one decreases the density ns of a
system of charged particles repelling each other via a U/r
Coulomb repulsion. As introduced long ago by Wigner,
the factor rs, defined as the radius r of the volume enclos-
ing a single particle in units of the Bohr radius aB, governs
this crossover. Quantum mechanical effects are important
when rs is small, and become more and more negligible
when rs becomes large. Since rs ∝ 1/

√
ns in two dimen-

sions, the quantum limit of a Fermi liquid is obtained at
large densities ns. In the dilute limit, the quantum effects
disappear and the charges crystallize, forming a Wigner
solid of minimum electrostatic energy. A calculation of the
electrostatic energy of different crystalline arrays shows
that the hexagonal array minimizes the energy in the 2d
continuum. However, in a square lattice model with peri-
odic boundary conditions (BCs) and for a sufficient filling
factor, the symmetry of the Wigner solid is restricted and
the formation of a square crystalline array is favored.

a e-mail: jpichard@cea.fr

Before studying this quantum-classical crossover in a
mesoscopic lattice model, let us mention that it is usually
assumed [1,2] that a single liquid-solid transition takes
place at rs ≈ 37 in the continuous 2d thermodynamic
limit. This single transition was obtained by fixed node
quantum Monte Carlo calculations [1,3], allowing to study
a few hundreds of electrons and to vary their number for
estimating the finite size effects. When the spin degrees
of freedom are included, the existence of an intermedi-
ate polarized liquid phase separating the unpolarized liq-
uid and the Wigner solid is still debated [4]. Though the
quantum Monte Carlo calculations have the advantage to
allow the study of a relatively large number of particles,
they have the well-known “sign problem”. This leads to
fixed node approximations which are made to avoid the
negative weights that would be generated otherwise by an-
tisymmetric states, and gives only an upper bound to the
exact ground state energy. In references [1,3] for instance,
two nodal structures have been considered, given by two
Slater-Jastrow wave functions adapted to describe the
weak coupling Fermi liquid (nodal structure of a Slater de-
terminant of plane waves) and the strong coupling Wigner
solid (nodal structure of a Slater determinant of local-
ized site orbitals). In these works, the existence of a single
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transition separating the Fermi liquid from the Wigner
solid is a consequence of the assumed nodal struc-
tures. Very recently, the ground state energy of the two-
dimensional uniform electron gas has been calculated [5]
with a fixed node diffusion Monte Carlo method, includ-
ing backflow correlations. The backflow method allows to
partly relax the previous nodal constraints. The backflow
nodes give smaller energies that the previous nodes, sup-
porting the existence of an intermediate polarized liquid
phase for 26 < rs < 35.

1.1 2d metal and related issues

The motivation to re-visit nowadays charge crystalliza-
tion in 2d Coulomb systems is fourfold. Firstly, it be-
comes possible to create 2d gases of charges in high quality
field effect devices and to decrease by a gate the carrier
density ns for obtaining a large factor rs. Doped semi-
conductors [6] (Si-Mosfet, Ga-As heterostructures, Si-Ge
quantum wells) can be now used to study how one goes
in two dimensions from a Fermi liquid towards a Wigner
crystal. Secondly, the direct observation of the Wigner
crystal being difficult, one can nevertheless measure the
conductance of the dilute 2d electron gas at different den-
sities as a function of the temperature, of the bias voltage,
of a parallel magnetic field, etc. Remarkably, those trans-
port measurements, first done [6] by Kravchenko et al. in
high quality Si-MOSFETs, show the existence of an un-
expected metal-insulator transition (MIT) when the gate
voltage varies and the dilute limit is reached. A similar
MIT was later observed [6] using a hole gas in Ga-As het-
erostructures and in Si-Ge quantum wells. This observa-
tion of a low temperature metallic behavior for typically
3 . . . 6 < rs < 9 . . . 30 (the largest ratios characterizing
the cleaner samples) raises the question of a possible in-
termediate phase, which should be neither a Fermi glass of
localized particles (Anderson insulator), nor a correlated
Wigner solid (pinned insulating crystal). Quite recently,
magnetotransport measurements in low density 2d hole
gas in GaAs quantum wells have been interpreted [7,8]
in terms of an unknown metallic phase coexisting with a
Fermi liquid phase, for estimated values 12 < rs < 18. Lo-
cal compressibility measurements by Ilani et al also point
to a two-phase coexistence picture for intermediate val-
ues of rs in GaAs [9]. Thirdly, the formation of a meso-
scopic Wigner molecule can be also nowadays studied us-
ing a quantum dot [10] with a few electrons or a few ions
[11] trapped by electric and magnetic fields. Increasing the
size of the trap yields [12] a crossover from independent-
particle towards collective motion. Quantum dots with a
few electrons are among possible candidates for provid-
ing the Qubits of a future quantum computer [13]. Lastly,
an unexplained intermediate regime was numerically ob-
served [14–16] in studying the persistent currents carried
by the ground state and the low energy excitations of
mesoscopic disordered clusters. Both experiments and nu-
merics give unexplained low energy behaviors for similar
intermediate values of the ratio rs.

1.2 Andreev-Lifshitz supersolid

In this study, we consider fully polarized electrons and
ignore possible magnetic transitions. For avoiding un-
controlled assumptions, we consider a system which is
small enough to allow exact numerical diagonalization,
but where the lattice effects and the finite size correc-
tions are important. Those two effects have been studied
in details in reference [17] for two polarized electrons. Our
main goal is to characterize as precisely as possible the
ground state for intermediate ratios rs, in order to see if
a small lattice model does not exhibit the mesoscopic sig-
nature of an intermediate phase separating the solid from
the liquid, where the solid and the fluid would coexist.
Such a vacancy-solid phase was indeed suggested [18] by
Andreev and Lifshitz if the zero point motions of certain
defects become sufficient to form waves propagating inside
the solid. This Andreev-Lifshitz supersolid was first pro-
posed for three dimensional quantum solids made of He
atoms. Castaing and Nozières have later considered [19]
such a possibility for spin polarized He3. The statistics of
the defects depend on their nature. For simple vacancies
in the crystal, their statistics is given by the statistics of
the particles out of which the solid is made. If the defects
are bosons, they may form a condensate, giving rise to a
superfluid coexisting with the solid. This supersolid phase
is discussed in certain bosonic models [20]. If the defects
are fermions, they may form a Fermi liquid [21] coexist-
ing with the solid, such that the system is neither a solid,
nor a liquid. Two kinds of motion are possible in it; one
possesses the properties of motion in an elastic solid, the
second possesses the properties of motion in a liquid.

If one considers the quantum melting of the solid from
the dilute limit (large rs), the nature of the relevant de-
fects is not an easy question. One can imagine a particle
being put into an intersticial site of the Wigner lattice,
creating a vacancy-intersticial pair at a certain electro-
static cost δU . A model assuming such defects has been
recently proposed [22] for describing addition spectra in
quantum dots. Classically, this vacancy-intersticial pair
remains localized. But quantum tunneling may lead to
delocalization of the defects and to the appearance of a
band of defects of finite width Bd which increases when
rs decreases. When Bd exceeds δU , one can imagine two
possibilities: either the total quantum melting [3] of the
Wigner crystal (simple solid-liquid transition), or a partial
melting leading to the persistence of a floppy crystal with
delocalized defects. If a delocalized defect appears in the
quantum crystal, the crystal remains perfectly periodic,
but the number of crystal lattice sites becomes smaller
than the total number of particles. This is the supersolid
scenario proposed by Andreev-Lifshitz for He physics.

If one considers charge crystallization from the other
limit, where the density ns is large (small rs), one can
argue that the interaction will create correlated pairs of
particles near the Fermi surface, but will not reorganize
the one particle states well below the Fermi surface. Such
a possibility has been proposed by Bouchaud et al. [23]
for liquid He3. Moreover, they have developed a varia-
tional approach, based on a fixed number of fermions BCS
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wave function, having a different nodal structure than the
Jastrow-Slater nodal structures considered in reference [1].
In this picture, the system is thought as made of unpaired
fermions with a reduced Fermi energy, co-existing with a
strongly paired, nearly solid assembly. Furthermore, it was
stressed that the supersolid – first introduced by Andreev
and Lifshitz – would be a good candidate to describe this
new phase. To the concept of a crystal with a reduced
number of crystal lattice sites, as discussed by Andreev
and Lifshitz from the solid limit, corresponds the concept
of unpaired fermions with a reduced Fermi energy, as dis-
cussed by Bouchaud et al from the liquid limit.

Our purpose is to study if a supersolid regime is rele-
vant for describing a low density 2d electron (or hole) gas.
This numerical work being restricted to very small system
sizes, the study is limited to merely study if one can de-
tect the mesoscopic trace of a possible supersolid. One of
our motivations comes from the observation [15] that the
low energy levels do not obey Wigner-Dyson statistics for
disordered clusters at intermediate ratios rs. This will be
again emphasized at the end of this work for the statistics
of the first energy excitation. This suggests the existence
of low energy collective excitations in the clean limit. For
this reason, we have studied clusters without random sub-
strate and we have observed at intermediate rs a floppy
correlated solid coexisting with a liquid of unpaired par-
ticles. This conclusion is supported by a study of the pro-
jection of the ground state (GS) onto a combination of
Slater determinants (SDs) built out from plane waves and
from site orbitals. The plane wave SDs are given by the
low energy levels of same total momentum K as the inter-
mediate GS, and correspond to unpaired fermions with a
reduced Fermi energy. The site SDs describe the Wigner
solid molecule and its small fluctuations. Since the GS is
given by the combination of unpaired fermions and of a
floppy Wigner molecule for rF

s ≈ 9.3 < rs < rW
s ≈ 28

in the studied system, we suggest that this is the meso-
scopic trace of the supersolid discussed in references [18]
and [23]. The study of the GS response to various pertur-
bations (Aharonov-Bohm flux, pinning well) and of the
distributions of the different inter-particle spacings allows
us to give a few remarkable properties of the intermedi-
ate regime. Eventually, we consider the effect of disorder
and give further evidence of the existence of a first thresh-
old rF

s (W ) where strong correlation effects occur without
yielding a full crystallization: (i) the breakdown of the
Hartree-Fock approximation for the ground state and (ii)
the breakdown of Wigner-Dyson level repulsion for the
first excitation.

2 Lattice model

We consider fully polarized electrons (i.e. spinless
fermions), having symmetric spin wave functions and an-
tisymmetric orbital wave functions, free to move in an
L×L lattice with periodic BCs, and interacting via a U/r
Coulomb repulsion. The Hamiltonian reads

H = −t
∑
〈i,j〉

c†icj +
∑

i

vini +
U

2

∑
i�=j

ninj

|rij | (1)

where i, j label the lattice sites, 〈i, j〉 means i nearest
neighbor to j, c†i, ci are the creation, annihilation op-
erators of a spinless fermion at the site i; ni = c†ici is
the occupation number at the site labeled by the vector
i = (ix, iy). The vector rij is defined as the shortest vec-
tor going from the site i to the site j in a square lattice
with periodic BCs (rx and ry ≤ L/2). t = �

2/(2ma2) is
the hopping term, a the lattice spacing, vi the site po-
tentials which are randomly distributed in the interval
[−W/2, W/2] and U = e2/(εa) the Coulomb interaction
between two fermions separated by a in a medium of di-
electric constant ε.

This work is restricted to a detailed study of the case
N = 4 and L = 6, corresponding to a filling factor
ν = N/L2 = 1/9. N = 4 is a ‘magic’ number for which
at large values of U , the 3 × 3 square Wigner molecule
is commensurate with the imposed 6 × 6 square lattice.
The rs factor, defined in the continuum as

rs =
1√

πnsaB
(2)

for a carrier density ns and a Bohr radius aB = �
2ε/(me2),

becomes in a lattice model

rs =
U

2t
√

πν
(3)

since �
2/(2ma2) → t, e2/(εa) → U and ns = ν/a2.

A L × L continuous 2d torus having infinitely more
degrees of freedom than a mere 6 × 6 lattice, one cannot
compare the obtained lattice behaviors to those obtained
assuming a continuous space, as in reference [1], without
further investigations. Nevertheless, appropriately defined
observables should only depend on the value of the di-
mensionless ratio rs, up to certain finite size corrections.
This has been checked [17] for two polarized electrons on
a square lattice, when the fluctuation ∆r of the distance r
between the two particles is larger than the lattice spac-
ing a. Calculating ∆r in powers of t/U , one finds [17] that
a correlated lattice regime takes place when rs exceeds a
threshold value r∗s ≈ 100 when N = 2 and L = 6. Below
r∗s , rs ∝ UL/t is the relevant scaling variable, up to certain
finite size corrections of order 1/L2. Above r∗s , one has a
lattice regime where rs is not a relevant scaling variable. If
the threshold value r∗s does not vary very much when one
goes from N = 2 to N = 4, one has a chance to observe
a four particle Wigner molecule free of important lattice
effects as far as rs < r∗s ≈ 100 when L = 6.

3 The non disordered lattice

When there is no disorder (W = 0), k = (kx, ky) being the
one particle momentum, it is more convenient to write H
using the Fourier transforms of the creation and annihila-
tion operators. One has the relations

cj =
1
L

∑
k

dkeik·j, (4)
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Fig. 1. Low kinetic energy plane wave SDs in momentum space
of coordinates (kx, ky): 1 GS |K0(β)〉 with � �= 0 (upper left),
together with 3 plane wave SDs of � = 0 and of low energies:
one of the 4 |K1(β)〉 of energy −12t (upper right), and two
of the 16 |K4(γ)〉 of energy −9t (lower right and left) directly
coupled by the two body interaction to the |K1(β)〉 shown in
the upper right figure. A circle means that the state (kx, ky) is
occupied, its energy being indicated in units of t.

and

dk =
1
L

∑
j

cje−ik·j . (5)

which yield

H =
∑

k

d†kdk ε(k) +
∑

q,k1,k2

V (q)d†k2+qd†k1−qdk1dk2 (6)

where

ε(k) = −2t (cos kx + cos ky) (7)

and

V (q) =
U

2L2

∑
j �=0

eiq·j

rj0
· (8)

In the eigenbasis of the non interacting system (eigen-
vectors d†k1

d†k2
d†k3

d†k4
|0〉, |0〉 being the vacuum state), the

Hamiltonian matrix is block diagonal, each block being
characterized by the same conserved total momentum
K =

∑4
i=1 ki. Only the non interacting states having in

common two ks out of four can be coupled by the interac-
tion inside a K sub-block. Therefore, each K sub-block is
a sparse matrix which can be exactly diagonalized using
the Lanczos algorithm.

3.1 The free Fermi limit

When U = 0, the states are then NH plane wave SDs
d†k1

d†k2
d†k3

d†k4
|0〉. NH = M !/(N !(M − N)!) = 58 905 for

X

Y

X

Y

X

Y

X

Y

Fig. 2. Low Coulomb energy site SDs in real space of co-
ordinates (x, y): one |S〉 with its 9 possible centers of mass
(upper left) , two |P2〉 (upper right), two |P3〉 (lower left) and
two |DS〉 (lower right), which give by successive translations
one |S(� = 0)〉, two |P2(� = 0, J)〉, two |P3(� = 0, J)〉 and
two out of four |DS(� = 0, J)〉 respectively. The two others
|DS(� = 0, J)〉 are obtained by successive translations of the
square deformed at the opposite corner.

M = L2 = 36 and N = 4. The low energy levels without
interaction are by increasing energies:

– 4 GSs |K0(β)〉 of energy E0(U = 0) = −13t and of
momenta K0 �= 0.

– 25 first excitations of energy E1(U = 0) = −12t,
– 64 second excitations of energy E2(U = 0) = −11t and

of momenta K2 �= 0.
– 180 third excitations of energy E3(U = 0) = −10t and

of momenta K3 �= 0.
– 384 fourth excitations of energy E4(U = 0) = −9t.

If one considers the low energy states of total momen-
tum K = 0, some of them being shown in Figure 1, one
finds by increasing energy:

– 4 SDs |K1(β)〉 (β = 1, . . . , 4) of energy −12t, corre-
sponding to a particle at an energy −4t with k1 =
(0, 0), two particles at an energy −3t and a fourth
particle of energy −2t; plus a single SD |K1(0)〉 with
4 particles of energy −3t.

– 16 SDs |K4(γ)〉 (γ = 1, . . . , 16) of energy −9t
given by 8 SDs where the particles have energies
−4t,−3t,−2t, 0t respectively and by 8 other SDs where
the particles have energies −3t,−3t,−2t,−t respec-
tively. Note that the |K4(γ)〉 are directly coupled to
the |K1(β)〉 by the pairwise interaction.

3.2 The correlated lattice limit

When t = 0, the translational invariance is broken and
the states are NH Slater determinants c†ic

†
jc

†
kc†l |0〉 built
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out from the site orbitals. The configurations ijkl corre-
spond to the NH different patterns characterizing 4 dif-
ferent sites of the L×L square lattice. The configurations
of low electrostatic energy are respectively:

– 9 square configurations |S〉 of side b = 3 and of energy
E0(t = 0) ≈ 1.80U ,

– 36 parallelograms |P1〉 of sides (3,
√

10) and of energy
≈ 1.85U ,

– 36 other parallelograms |P2〉 of sides (
√

10,
√

10) and
of energy ≈ 1.97U ,

– 144 deformed squares |DS〉 obtained by moving a sin-
gle site of a square |S〉 by one lattice spacing and of
energy ≈ 2U .

Some of those low energy site SDs are shown in
Figure 2.

When an infinitesimal hopping term t is included, one
must delocalize the site SDs in order to restore transla-
tional invariance and to have eigenstates of given quan-
tized total momenta K. For instance, the 9 squares |S〉
give 9 eigenstates of momentum K

|S(K)〉 =
1
L2

L∑
jx,jy=1

exp i(K · j)Tj |S〉 (9)

where

Tj |S〉 = c†(jx,jy)c
†
(jx,jy+3)c

†
(jx+3,jy)c

†
(jx+3,jy+3) |0〉 . (10)

The possible momenta for the |S(K)〉 are given by
(Kx, Ky) = 2π(px, py)/(L/2).

If we consider the low energy states of total momentum
K = 0 when rs → ∞, one finds by increasing energy the
following delocalized site SDs:

– 1 delocalized square |S(K = 0)〉,
– 2 delocalized parallelograms |P1(K = 0, J)〉 (J = 1, 2)

obtained from the 36 |P1〉,
– 2 delocalized parallelograms |P2(K = 0, J)〉 (J = 1, 2)

obtained from the 36 |P2〉,
– 4 delocalized deformed squares |DS(K = 0, J)〉 ob-

tained from the 144 |DS〉.

3.3 Level crossing at rFs and charge crystallization
at rWs

The low energy part of the spectrum is shown in Figure 3
as a function of rs. If we follow the 4 GSs of energy −13t
at rs = 0 (K0 �= 0), one can see a first level crossing at
rF
s ≈ 10 with a non degenerate level (K0 = 0) which be-

comes the GS above rF
s , followed by two other crossings

with two other sets of 4 levels with KI �= 0. When rs

is large, 9 levels coming from E1(rs = 0) have a smaller
energy than the 4 levels coming from E0(rs = 0). Since
the degeneracies are (9, 36, 36) when t = 0, these 9 states
give the 9 square molecules |S > when rs → ∞. The de-
generacies ordered by increasing energy become (1, 4, 4, 4)
instead of (4, 25, 64) for rs = 0.

To describe large rs, one can use degenerate perturba-
tion theory and study how the degeneracy of the 9 |S〉 is
removed by terms ∝ t/U ∝ r−1

s . The centers of mass R
of the 9 |S〉 are located on the periodic 3 × 3 square lat-
tice sketched in Figure 2. For large rs, one has a single
rigid molecule free to move on this restricted lattice, with
a hopping term T ∝ tr−3

s and a quantized momentum
K = 2π/(L/2)(px, py). Taking into account also the cor-
rections to the diagonal matrix elements, one obtains for
the 9 first energies E0(K) in the limit rs → ∞

E0(K)
t

= ED − 2
T

t
(cosKx(I) + cosKy(I)). (11)

ED = Ars + B/rs + C/r3
s and T/t = D/r3

s (A ≈ 2.13,
B ≈ −70.81, C ≈ −18 763 and D ≈ 3464). ED comes from
the small vibrations of the rigid molecule while 8T is the
band width of its zero point fluctuations. The degeneracies
are 1, 4, 4 respectively.

Four observations can be drawn from this t/U
expansion.

– The ground state must exhibit a level crossing since
the total momentum K = 0 when rs → ∞ (lowest
quantized kinetic energy for the center of mass of a
rigid square molecule) while K �= 0 when rs → 0
(incomplete filling of the Fermi shell −3t). Is this GS
level crossing a general feature? As explained in ref-
erence [24] K �= 0 at large rs for N = 3 and L = 6,
and there is no GS level crossing while there is one if
N = 3 and L = 8. When the spins are included, the
GS level crossing disappears for N = 4 and L = 6.
K = 0 at large rs for any L × L square lattice with a
filling factor ν = 1/9. For L = N = 9, the Fermi shell
−2t is totally filled, K = 0 at rs = 0 and momentum
conservation does not yield a GS level crossing, in con-
trast to the case L = 12 and N = 16 where the Fermi
shell is incompletely filled. As we see, the existence of
a GS level crossing depends on L and N and may not
have a particular significance. In this work, we have
studied the true GS, taking the subspaces of K �= 0
below rF

s , the subspace of K = 0 above rF
s . One could

have preferred to study the GS inside the subspace of
K = 0 for all the values of rs, to find that the onset
of correlation effects which we observe at rF

s as we will
see later should occur at a possibly smaller threshold
in the K = 0 subspace.

– In the inset of Figure 3, one can see that the t/U expan-
sion gives an accurate description of the 9 first energies
above a relatively large value rs ≈ 100. As explained in
reference [17], this t/U expansion is characteristic of a
correlated lattice regime where the fluctuations of the
charges around the equilibrium Wigner lattice sites are
strongly restricted by the imposed lattice. This lattice
expansion has to be distinguished from the large rs

expansion of a continuous model, where the oscilla-
tory motion of the electrons around the Wigner crystal
equilibrium positions gives [25] for the GS energy an
expansion in powers of 1/

√
rs.

– Though the t/U lattice expansion ceases to be ac-
curate below rs ≈ 100, the 9 low energy states
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exhibiting a level crossing at rF
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begin to have the structure of the spectrum of a single
massive particle in a 3 × 3 lattice (two equal energy
spacings ∆1 = ∆2 characterizing the 3 first sets of
states with degeneracies 1, 4, 4 respectively) at a lower
value rW

s ≈ 28. This structure means that the sys-
tem remains essentially a rigid square molecule with
its 9 quantized modes for the motion of the center of
mass down to rW

s . To create a defect in this square
molecule costs a high energy available in the 10th exci-
tation only. This is why we identify rW

s as the threshold
value for the mesoscopic crystallization, above a first
threshold rF

s and below a higher threshold rs ≈ 100
where the lattice t/U expansion becomes valid.

3.4 Truncated site basis

The NH site SDs c†ic
†
jc

†
kc†l |0〉 correspond to the NH dif-

ferent patterns characterizing 4 different sites ijkl of the
L × L square lattice. If we order those configurations by
the smallest distance d between two sites, Nd denoting the
number of configurations with inter-site spacings larger
than d, one has N1 = 27 225, N√

2 = 9837, N2 = 2709,
N√

5 = 81 configurations having a smallest inter-site spac-
ing > d, out of NH = 58 905 configurations. The two
thresholds rF

s and rW
s can be also detected if one calculates

the GS energy E0(Nd) of the truncated Hamiltonian writ-
ten using the site SDs basis restricted to Nd site SDs and
if we consider the error ∆E0(Nd) = (E0(Nd)−E0)/t made
using this truncation for having the exact GS energy E0.
As shown in Figure 4, the error ∆E0(N1) becomes small
above rF

s , while the error ∆E0(N√
5) = E0(t = 0)−E0 for

all values of rs. The error ∆E0(N2) has a very interest-
ing behavior. As rs increases, ∆E0(N2) first decreases up
to rs ≈ rF

s , then exhibits a very remarkable plateau for
rF
s < rs < rW

s , taking a value ≈ 3t independently of rs,

0 10 20 30 40
rs

0

5

10

15

3

∆E0(Nd)

r
F

s r
W

s

Fig. 4. Errors ∆E0(Nd) = (E0(Nd)−E0)/t as a function of rs:
d = 1 (thick line), d =

√
2 (dotted line), d = 2 (◦), d =

√
5 (�).
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Fig. 5. GS Projections P 0
0 (◦), P 1

0 (�), P 2
0 (�), P 3

0 (×) and
P 4

0 (∗) onto plane wave SDs of low energy when rs → 0

before decreasing as ∆E0(N√
5) above rW

s . This plateau
suggests that the GS for intermediate rs is composed of a
floppy molecule which can be projected onto the N2 site
SDs adapted to describe it, plus an unpaired fermion of
kinetic energy ≈ −3t which is not included in this trun-
cated subspace since it is delocalized. Very remarkably,
this energy turns out to be the energy of a particle at the
Fermi surface of the non interacting system.

3.5 GS projections onto plane waves

To understand further the nature of the GS between rF
s

and rW
s , we have projected the GS wave functions |Ψ0(rs)〉

over the low energy plane wave SDs appropriate to de-
scribe unpaired fermions. As shown in Figure 5, below rF

s ,
a K �= 0 GS has a large projection P 0

0 (rs) over the U = 0
GS of same K and begins to have a smaller projection
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Fig. 6. GS projection P 0
∞(rs) (�), P 1

∞(rs) (∗), P 2
∞(rs) (�)

and P 3
∞(rs) (�) onto the first � = 0 delocalized site SDs of

low energy when rs → ∞.

P 2
0 (rs) over the second excitations of the non interacting

system of same K. Above rF
s , the non degenerate GS with

K = 0 has of course no projection onto the plane wave
SDs of K �= 0, but has a large projection

P 1
0 (rs) =

4∑
β=1

| 〈Ψ0(rs)|K1(β)〉 |2 (12)

which is equally distributed over the 4 low energy states
|K1(β)〉 of K = 0 and a non negligible projection

P 4
0 (rs) =

16∑
γ=1

| 〈Ψ0(rs)|K4(γ)〉 |2 (13)

over the 16 previously defined |K4(γ)〉 of K = 0 which
are directly coupled by the interaction to the |K1(β)〉.

One concludes that a significant part of the system
remains an excited liquid above rF

s , described by a large
projection P0 = P 1

0 + P 4
0 over a few combinations of low

energy unpaired fermions. Due to the GS level crossing,
the intermediate GS has to be described from the K = 0
Fermi sea and not from the K �= 0 Fermi sea. Since this
projection is only partial, only a part of the system is
made of unpaired fermions, in agreement with the concept
proposed by Bouchaud et al of a reduced Fermi energy,
which decreases as rs increases.

3.6 GS projections onto site orbitals

We study now the GS projection over the low energy
site orbitals shown in Figure 2, which become the eigen-
states when rs → ∞. More precisely, we consider the
first delocalized site SDs having a delocalized center of
mass and the same momentum K than the GS: The de-
localized square |S(K)〉, the 2 delocalized parallelograms

|P1(K, J)〉, the 2 delocalized parallelograms |P2(K, J)〉,
and the 4 delocalized deformed squares |DS(K, J)〉. Fig-
ure 6 shows the behaviors of the GS projections

P 0
∞(rs) = | 〈Ψ0(rs)|S(K)〉 |2 (14)

P 1
∞(rs) =

2∑
J=1

| 〈Ψ0(rs)|P1(K, J)〉 |2 (15)

P 2
∞(rs) =

2∑
J=1

| 〈Ψ0(rs)|P2(K, J)〉 |2 (16)

P 3
∞(rs) = | 〈Ψ0(rs)|DS(K, J)〉 |2, (17)

where K is the GS momentum (K �= 0 below rF
s and

K = 0 above rF
s ).

While a K �= 0 GS has negligible projections over the
low energy site SDs of same K below rF

s , there is an im-
portant contribution above rF

s of the deformed squares,
of the square and of the parallelograms 1 of K = 0. As
rs increases, the GS projection P 0

∞(rs) over the square
molecule of K = 0 goes to 1. The GS projection P 3

∞(rs)
over the 4 deformed squares of K = 0 is the main pro-
jection below rs ≈ rW

s , a threshold value where the GS
projection P 1

∞(rs) over the parallelograms 1 is maximum.
One concludes that above rF

s , the missing part of the
system, which is not described by the low energy un-
paired fermions of the previous section, is a floppy Wigner
molecule, mainly made of deformed squares below rW

s and
of squares above rW

s .

3.7 GS projections onto a combined basis of plane
waves and site orbitals

The site SDs and plane wave SDs are not orthonormal. Af-
ter re-orthonormalization, the total GS projection Pt(rs)
over the subspace spanned by the 20 plane wave SDs and
the 9 delocalized site SDs of low energy and of momen-
tum K = 0 is given in Figure 7, together with the GS
projection P0(rs) = P 1

0 (rs) + P 4
0 (rs) over the 20 plane

wave SDs and P∞(rs) =
∑3

I=0 P I
∞(rs) over the 9 delo-

calized site SDs of momentum K = 0. One can see than
more than 95/100 of the intermediate GS is located in-
side this combined subspace, suitable to describe a floppy
solid co-existing with low energy unpaired fermions. This
demonstrates the Andreev-Lifshitz conjecture for the con-
sidered mesoscopic lattice model.

Let us point out that those exact results raise serious
objections about the validity of “exact” studies of a few
particles in the continuum, where the infinite Hilbert space
is truncated to the finite basis made of the low energy
plane wave SDs only. For intermediate rs, our exact results
show the necessity to combine plane wave SDs and site
SDs before truncating.
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Fig. 7. GS projection P0(rs) (∗) over the 20� = 0 plane wave
SDs of low energy, P∞(rs) (�) over the 9 � = 0 delocalized
site SDs and Pt(rs) (•) over combined plane wave and site SD
re-orthonormalized basis.

3.8 Inter-particle spacings

To understand the nature of the intermediate GS, we
study the distribution of the different inter-particle spac-
ings. For the site SDs c†ic

†
jc

†
kc†l |0〉, one defines the 6 spac-

ings dijkl(1) ≤ dijkl(2) ≤ . . . ≤ dijkl(6) of each configu-
ration ijkl ordered by increasing values. The nth moment
dn(p) of the pth GS inter-particle spacing at rs is given by:

〈dn(p)〉 =
NH∑

ijkl=1

dn
ijkl(p)| 〈Ψ0(rs)| c†ic†jc†kc†l |0〉 |2. (18)

Very weak random potentials are included to get rid of
the symmetries of the 6 × 6 lattice. After average over an
ensemble of random configurations, we show in Figure 8
how the 6 mean GS inter-particle spacings 〈dp〉 vary as a
function of rs for a value W = 0.1 of the disorder strength.
When rs → ∞, the 3 × 3 Wigner molecule gives d1 =
d2 = d3 = d4 = 3 and d5 = d6 = 3

√
2. As rs decays,

one can see that one of the largest spacings out of two
and two of the smallest spacings out of four remain close
their asymptotic values, in contrast to the others. This
shows us that one has for intermediate rs a floppy solid
made of three particles, while the fourth particle remains
delocalized. A similar conclusion was drawn from a study
of the case N = 3 and L = 6 in reference [24], where the
intermediate GS was shown to be a floppy two particle
molecule co-existing with a third delocalized particle.

The behaviors of the relative fluctuations

ud(p) =

√
〈d2(p)〉
〈d(p)〉2 − 1 (19)

of the 6 inter-particle spacing d(p) are given in Figure 9.
When rs → ∞, the fluctuations of the square molecule

10
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Fig. 8. Disorder average of the 6 mean inter-particle spacings
〈d(p)〉 as a function of rs for a very weak disorder (W = 0.1).
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Fig. 9. Disorder average of the relative fluctuations 〈ud(i)〉 of
the 6 inter-particle spacings as a function of rs for a very weak
disorder (W = 0.1), using the same symbols as in Figure 8.
Characteristic behaviors ur = 0.28 − 0.01rs (dotted-dashed),
ur ∝ 6/rs (solid) and ur ∝ 26/r2

s (dashed). Note the three
spacings having an almost rs independent fluctuations for rF

s <
rs < rW

s .

can be calculated using the t/U lattice expansion. At first
order, one can move only a single particle, which modifies
three inter-particle spacings out of six. The fluctuations of
the three remaining spacings is obtained by moving two
particles, which requires to go to the second order. This
explains the three r−1

s decays and the three r−2
s decays

characterizing the correlated lattice regime. The behaviors
in the intermediate regime are remarkable:

– The relative fluctuations of three spacings out of six
decay as rs increases, as one can expect if a floppy
3 particle molecule becomes more rigid as rs increases.

– The three others spacings have relative fluctuations
which are nearly independent of rs between rF

s and
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Fig. 10. Functions a(rs)/t (dotted) and b(rs)/t (filled squares)
characterizing the GS response to an infinitesimal flux; inset:
b(rs)/t (dashed) and 8D/9r−3

s (dotted).

rW
s , as one can expect if the 4th particle remains de-

localized.
– Notably, the smallest spacing has a relative fluctuation

which varies as 0.28−0.01rs for rs < rF
s (weak coupling

regime), which is almost independent of rs for rF
s <

rs < rW
s (intermediate regime) before decreasing as

6/rs above rW
s (correlated lattice regime).

The behaviors of the different inter-particle spacings
are consistent with the Andreev-Lifshitz conjecture for the
considered mesoscopic lattice model. Notably, the number
of crystal lattice sites is indeed smaller than the total num-
ber of particles.

3.9 GS response to small perturbations

We study now the GS response to small perturbations,
when the site potentials are non random (W = 0), which
gives us other signatures of the intermediate regime.

3.9.1 Aharonov-Bohm flux

The first one consists in piercing the 2d torus by an in-
finitesimal positive flux φ (periodic BCs along the y direc-
tion, t → t exp(iφ/L) for hopping along the x-direction
only, φ = π corresponding to anti-periodic BCs). The
coefficients a(rs) and b(rs) (Kohn curvature) of the ex-
pansion E0(rs, φ) ≈ E0(rs, 0) + a(rs)φ + b(rs)φ2/2 are
given in Figure 10. When rs = 0, φ removes the four-
fold degeneracy of E0, a = −√

3t/6 and b = 7t/36. When
rs is large, the substitution Kx(I) → Kx(I) + 2φ/3 in
equation (11) gives a = 0 and b ≈ 8Dtr−3

s /9. An in-
finitesimal positive flux φ gives rise to a persistent current
Ix = −∂E0/∂φ = −a when rs < rF

s while the GS curva-
ture b exhibits a smooth crossover between two regimes
around rW

s (inset of Fig. 10).
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r
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Fig. 11. GS density D�(rs) at the pinning site � with V�/t =
−0.01 (dotted), −0.05 (dashed) and −0.1 (dot-dashed).

3.9.2 Single pinning well

The second perturbation consists in introducing a weak
negative potential Vp at a single lattice site p. The GS
density

Dp(rs) = 〈Ψ0(rs)| c†pcp |Ψ0(rs)〉 (20)

at the site p is shown in Figure 11. If Vp = 0, Dp(rs = 0) =
1/9. A weak negative value of Vp yields a larger value for
Dp(rs = 0). When one turns on the interaction, Dp first
increases and drops at rF

s , where the interacting GS begins
to have a weaker response to a weak pinning well than the
non interacting GS. When rs is large, Dp increases again
and the Wigner molecule is pinned. This surprisingly weak
response for intermediate rs suggests that the system may
very weakly respond to the presence of weak impurities.
Let us underline that this is precisely for those values of
rs that the new 2d metal has been observed in 2d field
effect devices [6].

4 Lattice model with random potentials

We extend our study of the disorder by increasing W from
the previously considered weak value (W = 0.1) up to
larger values (W → 5) which are too small for having
exponential localization of the one particle states on a
scale L = 6, but sufficient for having one particle diffusion.

4.1 Inter-particle spacings

In Figure 12, one can compare the mean smallest and
largest inter-particle spacings. For W = 0.1, the effect of
the level crossing at rF

s is still visible when one follows the
largest spacing, but becomes very smooth for the smallest
spacing. The jump associated to rF

s is totally smeared for
W = 5. One can also see that the smallest spacing is closer
to its asymptotic value 3 as one increases W , showing
that disorder favors the formation of a correlated glass. In
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Fig. 12. Disorder average of the mean smallest and largest
inter-particle spacings for W = 0.1 (filled symbols) and 5
(empty symbols) as a function of rs.
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Fig. 13. Disorder average of the relative fluctuations of the
smallest and largest inter-particle spacings as a function of rs

for W = 0.1 and 5 (same symbols as in Fig. 12).

contrast, the disorder defavors the formation of a perfect
crystalline array, the largest spacing requiring a larger U
to reach its asymptotic value 3

√
2. Similar conclusion can

be drawn from Figure 13 where the corresponding relative
fluctuations of the smallest and largest spacings are given.

4.2 First energy excitation

Figure 14 gives the average over the disorder of the first
energy spacing 〈∆E〉 = 〈E1 − E0〉 as a function of rs for
different values of W . One can see a weak coupling regime
where 〈∆E〉 does not depend on rs, followed by an in-
crease of 〈∆E〉 as a function of rs. The threshold coupling
between those two regimes is naturally of the order of
rs ≈ 10 when W is small. When W is larger, 〈∆E〉 ∝ rα

s
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Fig. 14. Ensemble average of the first energy spacing 〈∆E〉 =
〈E1 − E0〉 as a function of rs for W = 0.2 (�), 0.5 (◦), 1 (
),
3 (∇) and 5 (�). Inset: crossover values rF

s (W ) as a function
of W .

as indicated by the dashed lines of Figure 14. Assuming
that the correlated regime occurs at the ratios rF

s (W ) be-
low which 〈∆E〉 does not depend on rs, and above which
〈∆E〉 increases as rα

s , we have plotted in the inset of Fig-
ure 14 how rF

s (W ) depends on W . The onset rF
s (W ) of

the correlation effects decays from the value ≈ 10 where
there is a level crossing without disorder towards a much
smaller value when W → 5.

This onset rF
s (W ) for W = 3 . . . 5 can also be seen

in the sample-to-sample distribution of the first energy
excitation. When rs is weak, the first many body excita-
tion corresponds to a single one body excitation above the
Fermi energy. If the one body motion is diffusive, the one
body spectrum is correlated, and the distribution P (s) of
the energy spacing between consecutive levels is given by
the Wigner surmise PW (s). Therefore, the first many body
spacing s = E1 − E0/ 〈E1 − E0〉 measured in units of its
ensemble averaged value is given by the Wigner surmise:

PW (s) =
πs

2
exp(−πs2

4
) (21)

as one can see in Figure 15 for rs < rF
s (W ). When rs

exceeds rF
s (W ), the level repulsion becomes weaker. As

shown in Figure 15, P (s) for low s is systematically larger
than PW (s) when rs = 5. To study this weakening of the
spectral rigidity, we define a spectral parameter

η(rs) =

∫ a

0 (P (s) − PW (s))ds∫ a

0 (PP (s) − PW (s))ds
, (22)

where PP (s) = exp−s is the Poisson distribution charac-
terizing uncorrelated levels and a = 0.4729 is the value
where PW (a) = PP (a). η = 1 when P (s) = PP (s) and
η = 0 when P (s) = PW (s). Very remarkably, one can
see in Figure 16 that the first energy excitation is well
described by the Wigner surmise up to a threshold con-
sistent with rF

S (W ) where the spectral rigidity suddenly
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E1 − E0/ 〈E1 − E0〉 for W = 5 and rs = 1.7 (•) and rs = 5
(�). The solid line is the Wigner surmise PW (s).
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Fig. 16. Spectral parameter η for the first energy spacing as
a function of rs for W = 3 (�) and 5 (•), showing the sharp
breakdown of the Wigner distribution at rF

s ≈ 1.7. The in-
set shows that the level repulsion is totally suppressed when
rs → ∞.

becomes weaker. The curves η(rs) are given on a larger
interval of values of rs in the inset of Figure 16, and
one can see the two characteristic thresholds detected
in earlier studies [14,15] for W = 5: rF

s (W = 5) ≈ 2
where one has the breakdown of Wigner-Dyson rigidity
and rW

s (W = 5) ≈ 10 where was located the onset of
charge crystallization.

In summary, when disorder yields one particle diffu-
sion, the onset of correlation effects occurs at a weaker
value rF

s (W ) than in the clean limit, yielding for the exci-
tation energy ∆E an increase of its average value when rs

increases and a change of its distribution.
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Fig. 17. Ensemble average GS current 〈Ix〉 as a function of rs

for W = 5. Exact values (filled symbols) and HF values (empty
symbols).

4.3 Breakdown of the Hartree-Fock approximation

A last evidence proving that rF
s (W ) is indeed the onset

of the correlation effects is shown by Figure 17 where the
disorder average total GS persistent current 〈Ix〉 enclosing
a flux φ = π/2 is shown as a function of rs. Both the exact
numerical value and the mean field value given by the
Hartree-Fock approximation are given. As one can see, the
change seen in the mean and in the distribution of the first
energy excitation at rF

s (W ) are correlated with the fact
that the ground state cannot been described by the best
possible Slater determinant (HF-approximation), due to
correlation effects which are beyond a simple mean field
approach.

5 Conclusion

Firstly, it is interesting to compare our results obtained on
a 2d torus without edge to those obtained using an har-
monic confinement. For instance, a Monte Carlo study [26]
of a few electrons in an harmonic trap concludes that
mesoscopic Wigner crystallization proceeds in two stages:
(i) via radial ordering of electrons on shells and (ii) freez-
ing of the intershell rotation. This crystallization in two
steps, with a particular intermediate behavior, could be
attributed to the non uniform density characterizing the
harmonic trap. One may argue that crystallization takes
place in the low density edges before the large density
bulk, such that this intermediate regime might be related
to some interplay between edge and bulk effects. We find
that mesoscopic Wigner crystallization takes also place in
two stages when the particles are confined on a 2d torus
with a uniform density.

Secondly, this raises the question to know if this in-
termediate regime is a pure mesoscopic effect valid only
in small systems, or the mesoscopic trace of the Andreev-
Lifshitz supersolid, where unpaired fermions with reduced
Fermi energy co-exist with a floppy solid. This might
explain a few recent experimental studies [7–9] of the
metallic 2d hole gas in GaAs, where a not well identified
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metallic phase seems to coexist with a more usual Fermi
liquid phase, responsible of usual weak localization behav-
iors. This two-phase coexistence scenario may be simply
explained by a supersolid phase, without having to nec-
essarily take into account the disorder effects [27]. Upon
completion of this manuscript, we received from Boris Spi-
vak [28] a preprint where the existence of an intermediate
phase between the Fermi liquid and the Wigner crystal is
claimed to be a generic property of the 2d pure electron
liquid in MOSFETs at zero temperature, and where the
consequences for the experimental results obtained in 2d
MOSFETs are also discussed.

Thirdly, one cannot exclude that a supersolid regime
is favored by the chosen geometry, because of the number
of particles and underlying square lattice, but not favored
at all in the continuous limit, which has not a square sym-
metry but a spontaneously broken hexagonal symmetry.
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